1.
Anderson PE, Smith JQ. A graphical framework for representing the semantics of asymmetric models. 2005;University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12). Available from: http://wrap.warwick.ac.uk/35587/
2.
Bonet B. A Calculus for Causal Relevance. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence [Internet]. S. Francisco: Morgan Kaufmann; 2001. p. 40–7. Available from: http://arxiv.org/abs/1301.2257?
3.
Bonet B. Instrumentality Tests Revisited. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence [Internet]. S. Francisco: Morgan Kaufmann Publishers; 2001. p. 48–54. Available from: http://arxiv.org/abs/1301.2258?
4.
Capani A, Niesi G, Robbiano L. CoCoA 4. a system for doing Computations in Commutative Algebra [Internet]. 2000. Available from: http://cocoa.dima.unige.it
5.
Char BW. Maple V library reference manual. New York: Springer-Verlag; 1991.
6.
Gale WA, AT & T Bell Laboratories, Workshop on Artificial Intelligence and Statistics. Artificial intelligence and statistics. Reading, Mass: Addison-Wesley Pub. Co; 1986.
7.
Dawid AP. Causal Inference Without Counterfactuals. Journal of the American Statistical Association [Internet]. 2000;95(450):407–24. Available from: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377
8.
Dawid AP. Influence Diagrams for Causal Modelling and Inference. International Statistical Review / Revue Internationale de Statistique [Internet]. 2002;70(2):161–89. Available from: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901
9.
Cooper GF, Glymour CN, editors. Computation, causation, and discovery [Internet]. Cambridge, Massachusetts: The MIT Press; 1999. Available from: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery
10.
Barndorff-Nielsen OE, Cox DR, Klüppelberg C. Complex stochastic systems [Internet]. Vol. Monographs on statistics and applied probability. Boca Raton: Chapman & Hall/CRC; Available from: http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988
11.
Cox DR, Klüppelberg C, Barndorff-Nielsen OE. Complex stochastic systems. Vol. Monographs on statistics and applied probability. Boca Raton, Fla: Chapman & Hall/CRC; 2001.
12.
Monroy R, Mexican International Conference on Artificial Intelligence. MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings [Internet]. Vol. 2972. Berlin: Springer-Verlag; Available from: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
13.
Monroy R, Mexican International Conference on Artificial Intelligence. MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings [Internet]. Vol. 2972. Berlin: Springer-Verlag; Available from: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
14.
Mond D, Riccomagno E, Smith JQ. Algebraic causality : Bayes nets and beyond. 2007;Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13). Available from: http://wrap.warwick.ac.uk/35544
15.
Pearl J. Comment: Graphical Models, Causality and Intervention. Statistical Science [Internet]. 1993;8(3):266–9. Available from: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965
16.
Pearl J. Causal Diagrams for Empirical Research. Biometrika [Internet]. 1995;82(4):669–88. Available from: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329
17.
Pearl J. Causality: models, reasoning, and inference. Cambridge: Cambridge University Press; 2000.
18.
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza; 2004.
19.
Riccomagno E, Smith JQ. The causal manipulation and Bayesian estimation of chain event graphs. 2005; Available from: http://wrap.warwick.ac.uk/35590/
20.
Pronzato L, Zhigli︠a︡vskiĭ AA. Optimal design and related areas in optimization and statistics [Internet]. Vol. Springer optimization and its applications. New York: Springer; 2008. Available from: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6
21.
Pearl J. Statistics and causal inference: A review. Test [Internet]. 2003 Dec;12(2):281–345. Available from: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/article/10.1007/BF02595718
22.
Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical Modelling [Internet]. 1986;7(9–12):1393–512. Available from: https://0-www-sciencedirect-com.pugwash.lib.warwick.ac.uk/science/article/pii/0270025586900886?via%3Dihub
23.
Berkane M. Latent variable modeling and applications to causality [Internet]. Vol. 120. New York: Springer; Available from: http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176
24.
Scheines R, Spirtes P, Glymour C, Meek C, Richardson T. TETRAD 3: Tools for Causal Modeling. User’s Manual [Internet]. Available from: http://www.phil.cmu.edu/tetrad/
25.
Shafer G. The art of causal conjecture. Vol. Artificial intelligence. Cambridge, Mass: MIT Press; 1996.
26.
Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2nd ed. Vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press; 2000.
27.
Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search [Internet]. 2nd edition. Vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press; 2000. Available from: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search
28.
Studený M. Probabilistic conditional independence structures [Internet]. Vol. Information science and statistics. London: Springer; 2005. Available from: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557
29.
Studený M. Probabilistic conditional independence structures. Vol. Information science and statistics. London: Springer; 2005.
30.
Smith JQ, Anderson PE. Conditional independence and chain event graphs. Artificial Intelligence. 2008 Jan;172(1):42–68.
31.
Smith JQ. Bayesian Decision Analysis: Principles and Practice [Internet]. Cambridge: Cambridge University Press; 2010. Available from: http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237
32.
Smith JQ. Bayesian decision analysis: principles and practice. Cambridge: Cambridge University Press; 2010.
33.
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006. Paris: EDK; 2006.
34.
Thwaites PA, Smith JQ. Evaluating Causal effects using Chain Event Graphs. In: The third Workshop on Probabilistic Graphical Models [Internet]. p. 291–300. Available from: http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf