Anderson, P.E. and Smith, J.Q. (2005) ‘A graphical framework for representing the semantics of asymmetric models’, University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12). Available at: http://wrap.warwick.ac.uk/35587/.
Barndorff-Nielsen, O.E., Cox, D.R. and Klüppelberg, C. (no date) Complex stochastic systems [electronic resource]. Boca Raton: Chapman & Hall/CRC. Available at: http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988.
Berkane, M. (no date) Latent variable modeling and applications to causality. New York: Springer. Available at: http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176.
Bonet, B. (2001a) ‘A Calculus for Causal Relevance’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: Morgan Kaufmann, pp. 40–47. Available at: http://arxiv.org/abs/1301.2257?
Bonet, B. (2001b) ‘Instrumentality Tests Revisited’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: Morgan Kaufmann Publishers, pp. 48–54. Available at: http://arxiv.org/abs/1301.2258?
Capani, A., Niesi, G. and Robbiano, L. (2000) ‘CoCoA 4. a system for doing Computations in Commutative Algebra’. Available at: http://cocoa.dima.unige.it.
Char, B.W. (1991) Maple V library reference manual. New York: Springer-Verlag.
Cooper, G.F. and Glymour, C.N. (eds) (1999) Computation, causation, and discovery. Cambridge, Massachusetts: The MIT Press. Available at: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery.
Cox, D.R., Klüppelberg, C. and Barndorff-Nielsen, O.E. (2001) Complex stochastic systems. Boca Raton, Fla: Chapman & Hall/CRC.
Dawid, A.P. (2000) ‘Causal Inference Without Counterfactuals’, Journal of the American Statistical Association, 95(450), pp. 407–424. Available at: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377.
Dawid, A.P. (2002) ‘Influence Diagrams for Causal Modelling and Inference’, International Statistical Review / Revue Internationale de Statistique, 70(2), pp. 161–189. Available at: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901.
Gale, W.A., AT & T Bell Laboratories, and Workshop on Artificial Intelligence and Statistics (1986) Artificial intelligence and statistics. Reading, Mass: Addison-Wesley Pub. Co.
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006 (2006). Paris: EDK.
Mond, D., Riccomagno, E. and Smith, J.Q. (2007) ‘Algebraic causality : Bayes nets and beyond’, Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13). Available at: http://wrap.warwick.ac.uk/35544.
Monroy, R. and Mexican International Conference on Artificial Intelligence (no date a) MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Berlin: Springer-Verlag. Available at: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521.
Monroy, R. and Mexican International Conference on Artificial Intelligence (no date b) MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Berlin: Springer-Verlag. Available at: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521.
Pearl, J. (1993) ‘Comment: Graphical Models, Causality and Intervention’, Statistical Science, 8(3), pp. 266–269. Available at: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965.
Pearl, J. (1995) ‘Causal Diagrams for Empirical Research’, Biometrika, 82(4), pp. 669–688. Available at: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329.
Pearl, J. (2000) Causality: models, reasoning, and inference. Cambridge: Cambridge University Press.
Pearl, J. (2003) ‘Statistics and causal inference: A review’, Test, 12(2), pp. 281–345. Available at: https://doi.org/10.1007/BF02595718.
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2004). Università La Sapienza.
Pronzato, L. and Zhigli︠a︡vskiĭ, A.A. (2008) Optimal design and related areas in optimization and statistics. New York: Springer. Available at: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6.
Riccomagno, E. and Smith, J.Q. (2005) ‘The causal manipulation and Bayesian estimation of chain event graphs’. Available at: http://wrap.warwick.ac.uk/35590/.
Robins, J. (1986) ‘A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect’, Mathematical Modelling, 7(9–12), pp. 1393–1512. Available at: https://doi.org/10.1016/0270-0255(86)90088-6.
Scheines, R. et al. (no date) TETRAD 3: Tools for Causal Modeling. User’s Manual. Available at: http://www.phil.cmu.edu/tetrad/.
Shafer, G. (1996) The art of causal conjecture. Cambridge, Mass: MIT Press.
Smith, Jim Q. (2010) Bayesian Decision Analysis: Principles and Practice. Cambridge: Cambridge University Press. Available at: http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237.
Smith, J. Q. (2010) Bayesian decision analysis: principles and practice. Cambridge: Cambridge University Press.
Smith, J.Q. and Anderson, P.E. (2008) ‘Conditional independence and chain event graphs’, Artificial Intelligence, 172(1), pp. 42–68. Available at: https://doi.org/10.1016/j.artint.2007.05.004.
Spirtes, P., Glymour, C.N. and Scheines, R. (2000a) Causation, prediction, and search. 2nd ed. Cambridge, Mass: MIT Press.
Spirtes, P., Glymour, C.N. and Scheines, R. (2000b) Causation, prediction, and search. 2nd edition. Cambridge, Massachusetts: The MIT Press. Available at: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search.
Studený, M. (2005a) Probabilistic conditional independence structures [electronic resource]. London: Springer. Available at: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557.
Studený, M. (2005b) Probabilistic conditional independence structures. London: Springer.
Thwaites, P.A. and Smith, J.Q. (no date) ‘Evaluating Causal effects using Chain Event Graphs’, in The third Workshop on Probabilistic Graphical Models, pp. 291–300. Available at: http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf.