[1]
P. E. Anderson and J. Q. Smith, ‘A graphical framework for representing the semantics of asymmetric models’, vol. University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12)., 2005, Available: http://wrap.warwick.ac.uk/35587/
[2]
B. Bonet, ‘A Calculus for Causal Relevance’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence, S. Francisco: Morgan Kaufmann, 2001, pp. 40–47. Available: http://arxiv.org/abs/1301.2257?
[3]
B. Bonet, ‘Instrumentality Tests Revisited’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence, S. Francisco: Morgan Kaufmann Publishers, 2001, pp. 48–54. Available: http://arxiv.org/abs/1301.2258?
[4]
A. Capani, G. Niesi, and L. Robbiano, ‘CoCoA 4. a system for doing Computations in Commutative Algebra’. 2000. Available: http://cocoa.dima.unige.it
[5]
B. W. Char, Maple V library reference manual. New York: Springer-Verlag, 1991.
[6]
W. A. Gale, AT & T Bell Laboratories, and Workshop on Artificial Intelligence and Statistics, Artificial intelligence and statistics. Reading, Mass: Addison-Wesley Pub. Co, 1986.
[7]
A. P. Dawid, ‘Causal Inference Without Counterfactuals’, Journal of the American Statistical Association, vol. 95, no. 450, pp. 407–424, 2000, Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377
[8]
A. P. Dawid, ‘Influence Diagrams for Causal Modelling and Inference’, International Statistical Review / Revue Internationale de Statistique, vol. 70, no. 2, pp. 161–189, 2002, Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901
[9]
G. F. Cooper and C. N. Glymour, Eds, Computation, causation, and discovery. Cambridge, Massachusetts: The MIT Press, 1999. Available: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery
[10]
O. E. Barndorff-Nielsen, D. R. Cox, and C. Klüppelberg, Complex stochastic systems, vol. Monographs on statistics and applied probability. Boca Raton: Chapman & Hall/CRC. Available: http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988
[11]
D. R. Cox, C. Klüppelberg, and O. E. Barndorff-Nielsen, Complex stochastic systems, vol. Monographs on statistics and applied probability. Boca Raton, Fla: Chapman & Hall/CRC, 2001.
[12]
R. Monroy and Mexican International Conference on Artificial Intelligence, MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings, vol. 2972. Berlin: Springer-Verlag. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
[13]
R. Monroy and Mexican International Conference on Artificial Intelligence, MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings, vol. 2972. Berlin: Springer-Verlag. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
[14]
D. Mond, E. Riccomagno, and J. Q. Smith, ‘Algebraic causality : Bayes nets and beyond’, vol. Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13)., 2007, Available: http://wrap.warwick.ac.uk/35544
[15]
J. Pearl, ‘Comment: Graphical Models, Causality and Intervention’, Statistical Science, vol. 8, no. 3, pp. 266–269, 1993, Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965
[16]
J. Pearl, ‘Causal Diagrams for Empirical Research’, Biometrika, vol. 82, no. 4, pp. 669–688, 1995, Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329
[17]
J. Pearl, Causality: models, reasoning, and inference. Cambridge: Cambridge University Press, 2000.
[18]
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza, 2004.
[19]
E. Riccomagno and J. Q. Smith, ‘The causal manipulation and Bayesian estimation of chain event graphs’, 2005, Available: http://wrap.warwick.ac.uk/35590/
[20]
L. Pronzato and A. A. Zhigli︠a︡vskiĭ, Optimal design and related areas in optimization and statistics, vol. Springer optimization and its applications. New York: Springer, 2008. Available: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6
[21]
J. Pearl, ‘Statistics and causal inference: A review’, Test, vol. 12, no. 2, pp. 281–345, Dec. 2003, doi: 10.1007/BF02595718. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/article/10.1007/BF02595718
[22]
J. Robins, ‘A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect’, Mathematical Modelling, vol. 7, no. 9–12, pp. 1393–1512, 1986, doi: 10.1016/0270-0255(86)90088-6. Available: https://0-www-sciencedirect-com.pugwash.lib.warwick.ac.uk/science/article/pii/0270025586900886?via%3Dihub
[23]
M. Berkane, Latent variable modeling and applications to causality, vol. 120. New York: Springer. Available: http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176
[24]
R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson, ‘TETRAD 3: Tools for Causal Modeling. User’s Manual’. Available: http://www.phil.cmu.edu/tetrad/
[25]
G. Shafer, The art of causal conjecture, vol. Artificial intelligence. Cambridge, Mass: MIT Press, 1996.
[26]
P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search, 2nd ed., vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press, 2000.
[27]
P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search, 2nd edition., vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2000. Available: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search
[28]
M. Studený, Probabilistic conditional independence structures, vol. Information science and statistics. London: Springer, 2005. Available: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557
[29]
M. Studený, Probabilistic conditional independence structures, vol. Information science and statistics. London: Springer, 2005.
[30]
J. Q. Smith and P. E. Anderson, ‘Conditional independence and chain event graphs’, Artificial Intelligence, vol. 172, no. 1, pp. 42–68, Jan. 2008, doi: 10.1016/j.artint.2007.05.004
[31]
J. Q. Smith, Bayesian Decision Analysis: Principles and Practice. Cambridge: Cambridge University Press, 2010. Available: http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237
[32]
J. Q. Smith, Bayesian decision analysis: principles and practice. Cambridge: Cambridge University Press, 2010.
[33]
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006. Paris: EDK, 2006.
[34]
P. A. Thwaites and J. Q. Smith, ‘Evaluating Causal effects using Chain Event Graphs’, in The third Workshop on Probabilistic Graphical Models, pp. 291–300. Available: http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf