[1]
P. E. Anderson and J. Q. Smith, ‘A graphical framework for representing the semantics of asymmetric models’, vol. University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12)., 2005 [Online]. Available: http://wrap.warwick.ac.uk/35587/
[2]
B. Bonet, ‘A Calculus for Causal Relevance’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence, 2001, pp. 40–47 [Online]. Available: http://arxiv.org/abs/1301.2257?
[3]
B. Bonet, ‘Instrumentality Tests Revisited’, in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence, 2001, pp. 48–54 [Online]. Available: http://arxiv.org/abs/1301.2258?
[4]
A. Capani, G. Niesi, and L. Robbiano, ‘CoCoA 4. a system for doing Computations in Commutative Algebra’. 2000 [Online]. Available: http://cocoa.dima.unige.it
[5]
B. W. Char, Maple V library reference manual. New York: Springer-Verlag, 1991.
[6]
W. A. Gale, AT & T Bell Laboratories, and Workshop on Artificial Intelligence and Statistics, Artificial intelligence and statistics. Reading, Mass: Addison-Wesley Pub. Co, 1986.
[7]
A. P. Dawid, ‘Causal Inference Without Counterfactuals’, Journal of the American Statistical Association, vol. 95, no. 450, pp. 407–424, 2000 [Online]. Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377
[8]
A. P. Dawid, ‘Influence Diagrams for Causal Modelling and Inference’, International Statistical Review / Revue Internationale de Statistique, vol. 70, no. 2, pp. 161–189, 2002 [Online]. Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901
[9]
G. F. Cooper and C. N. Glymour, Eds., Computation, causation, and discovery. Cambridge, Massachusetts: The MIT Press, 1999 [Online]. Available: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery
[10]
O. E. Barndorff-Nielsen, D. R. Cox, and C. Klüppelberg, Complex stochastic systems, vol. Monographs on statistics and applied probability. Boca Raton: Chapman & Hall/CRC [Online]. Available: http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988
[11]
D. R. Cox, C. Klüppelberg, and O. E. Barndorff-Nielsen, Complex stochastic systems, vol. Monographs on statistics and applied probability. Boca Raton, Fla: Chapman & Hall/CRC, 2001.
[12]
R. Monroy and Mexican International Conference on Artificial Intelligence, MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings, vol. 2972. Berlin: Springer-Verlag [Online]. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
[13]
R. Monroy and Mexican International Conference on Artificial Intelligence, MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings, vol. 2972. Berlin: Springer-Verlag [Online]. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
[14]
D. Mond, E. Riccomagno, and J. Q. Smith, ‘Algebraic causality : Bayes nets and beyond’, vol. Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13)., 2007 [Online]. Available: http://wrap.warwick.ac.uk/35544
[15]
J. Pearl, ‘Comment: Graphical Models, Causality and Intervention’, Statistical Science, vol. 8, no. 3, pp. 266–269, 1993 [Online]. Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965
[16]
J. Pearl, ‘Causal Diagrams for Empirical Research’, Biometrika, vol. 82, no. 4, pp. 669–688, 1995 [Online]. Available: http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329
[17]
J. Pearl, Causality: models, reasoning, and inference. Cambridge: Cambridge University Press, 2000.
[18]
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza, 2004.
[19]
E. Riccomagno and J. Q. Smith, ‘The causal manipulation and Bayesian estimation of chain event graphs’, 2005 [Online]. Available: http://wrap.warwick.ac.uk/35590/
[20]
L. Pronzato and A. A. Zhigli︠a︡vskiĭ, Optimal design and related areas in optimization and statistics, vol. Springer optimization and its applications. New York: Springer, 2008 [Online]. Available: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6
[21]
J. Pearl, ‘Statistics and causal inference: A review’, Test, vol. 12, no. 2, pp. 281–345, Dec. 2003, doi: 10.1007/BF02595718. [Online]. Available: https://0-link-springer-com.pugwash.lib.warwick.ac.uk/article/10.1007/BF02595718
[22]
J. Robins, ‘A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect’, Mathematical Modelling, vol. 7, no. 9–12, pp. 1393–1512, 1986, doi: 10.1016/0270-0255(86)90088-6. [Online]. Available: https://0-www-sciencedirect-com.pugwash.lib.warwick.ac.uk/science/article/pii/0270025586900886?via%3Dihub
[23]
M. Berkane, Latent variable modeling and applications to causality, vol. 120. New York: Springer [Online]. Available: http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176
[24]
R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson, ‘TETRAD 3: Tools for Causal Modeling. User’s Manual’. [Online]. Available: http://www.phil.cmu.edu/tetrad/
[25]
G. Shafer, The art of causal conjecture, vol. Artificial intelligence. Cambridge, Mass: MIT Press, 1996.
[26]
P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search, 2nd ed., vol. Adaptive computation and machine learning. Cambridge, Mass: MIT Press, 2000.
[27]
P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search, 2nd edition., vol. Adaptive computation and machine learning. Cambridge, Massachusetts: The MIT Press, 2000 [Online]. Available: http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search
[28]
M. Studený, Probabilistic conditional independence structures, vol. Information science and statistics. London: Springer, 2005 [Online]. Available: http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557
[29]
M. Studený, Probabilistic conditional independence structures, vol. Information science and statistics. London: Springer, 2005.
[30]
J. Q. Smith and P. E. Anderson, ‘Conditional independence and chain event graphs’, Artificial Intelligence, vol. 172, no. 1, pp. 42–68, Jan. 2008, doi: 10.1016/j.artint.2007.05.004.
[31]
J. Q. Smith, Bayesian Decision Analysis: Principles and Practice. Cambridge: Cambridge University Press, 2010 [Online]. Available: http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237
[32]
J. Q. Smith, Bayesian decision analysis: principles and practice. Cambridge: Cambridge University Press, 2010.
[33]
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006. Paris: EDK, 2006.
[34]
P. A. Thwaites and J. Q. Smith, ‘Evaluating Causal effects using Chain Event Graphs’, in The third Workshop on Probabilistic Graphical Models, pp. 291–300 [Online]. Available: http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf