Anderson, Paul E., and J. Q. Smith. 2005. ‘A Graphical Framework for Representing the Semantics of Asymmetric Models’. University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12).
Anon. 2004. Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza.
Anon. 2006. Information Processing and Management of Uncertainty Knowledge-Based Systems : Proceedings = Traitment d’information et Gestion d’incertitudes Dans Les Systemes a Base de Connaissances : Actes : July 2-7, 2006. Paris: EDK.
Barndorff-Nielsen, O. E., D. R. Cox, and Claudia Klüppelberg. n.d. Complex Stochastic Systems. Vol. Monographs on statistics and applied probability. Boca Raton: Chapman & Hall/CRC.
Berkane, Maia. n.d. Latent Variable Modeling and Applications to Causality. Vol. 120. New York: Springer.
Bonet, Blai. 2001a. ‘A Calculus for Causal Relevance’. Pp. 40–47 in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: Morgan Kaufmann.
Bonet, Blai. 2001b. ‘Instrumentality Tests Revisited’. Pp. 48–54 in Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: Morgan Kaufmann Publishers.
Capani, A., G. Niesi, and L. Robbiano. 2000. ‘CoCoA 4. a System for Doing Computations in Commutative Algebra’.
Char, Bruce W. 1991. Maple V Library Reference Manual. New York: Springer-Verlag.
Cooper, Gregory Floyd, and Clark N. Glymour, eds. 1999. Computation, Causation, and Discovery. Cambridge, Massachusetts: The MIT Press.
Cox, D. R., Claudia Klüppelberg, and O. E. Barndorff-Nielsen. 2001. Complex Stochastic Systems. Vol. Monographs on statistics and applied probability. Boca Raton, Fla: Chapman & Hall/CRC.
Dawid, A. P. 2000. ‘Causal Inference Without Counterfactuals’. Journal of the American Statistical Association 95(450):407–24.
Dawid, A. P. 2002. ‘Influence Diagrams for Causal Modelling and Inference’. International Statistical Review / Revue Internationale de Statistique 70(2):161–89.
Gale, William A., AT & T Bell Laboratories, and Workshop on Artificial Intelligence and Statistics. 1986. Artificial Intelligence and Statistics. Reading, Mass: Addison-Wesley Pub. Co.
Mond, D., E. Riccomagno, and J. Q. Smith. 2007. ‘Algebraic Causality : Bayes Nets and Beyond’. Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13).
Monroy, Raúl and Mexican International Conference on Artificial Intelligence. n.d.-a. MICAI 2004: Advances in Artificial Intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : Proceedings. Vol. 2972. Berlin: Springer-Verlag.
Monroy, Raúl and Mexican International Conference on Artificial Intelligence. n.d.-b. MICAI 2004: Advances in Artificial Intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : Proceedings. Vol. 2972. Berlin: Springer-Verlag.
Pearl, Judea. 1993. ‘Comment: Graphical Models, Causality and Intervention’. Statistical Science 8(3):266–69.
Pearl, Judea. 1995. ‘Causal Diagrams for Empirical Research’. Biometrika 82(4):669–88.
Pearl, Judea. 2000. Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
Pearl, Judea. 2003. ‘Statistics and Causal Inference: A Review’. Test 12(2):281–345. doi: 10.1007/BF02595718.
Pronzato, Luc, and A. A. Zhigli︠a︡vskiĭ. 2008. Optimal Design and Related Areas in Optimization and Statistics. Vol. Springer optimization and its applications. New York: Springer.
Riccomagno, E., and J. Q. Smith. 2005. ‘The Causal Manipulation and Bayesian Estimation of Chain Event Graphs’.
Robins, James. 1986. ‘A New Approach to Causal Inference in Mortality Studies with a Sustained Exposure Period—Application to Control of the Healthy Worker Survivor Effect’. Mathematical Modelling 7(9–12):1393–1512. doi: 10.1016/0270-0255(86)90088-6.
Scheines, R., P. Spirtes, C. Glymour, C. Meek, and T. Richardson. n.d. ‘TETRAD 3: Tools for Causal Modeling. User’s Manual’. Retrieved (http://www.phil.cmu.edu/tetrad/).
Shafer, Glenn. 1996. The Art of Causal Conjecture. Vol. Artificial intelligence. Cambridge, Mass: MIT Press.
Smith, J. Q. 2010. Bayesian Decision Analysis: Principles and Practice. Cambridge: Cambridge University Press.
Smith, Jim Q. 2010. Bayesian Decision Analysis: Principles and Practice. Cambridge: Cambridge University Press.
Smith, Jim Q., and Paul E. Anderson. 2008. ‘Conditional Independence and Chain Event Graphs’. Artificial Intelligence 172(1):42–68. doi: 10.1016/j.artint.2007.05.004.
Spirtes, Peter, Clark N. Glymour, and Richard Scheines. 2000a. Causation, Prediction, and Search. Vol. Adaptive computation and machine learning. 2nd ed. Cambridge, Mass: MIT Press.
Spirtes, Peter, Clark N. Glymour, and Richard Scheines. 2000b. Causation, Prediction, and Search. Vol. Adaptive computation and machine learning. 2nd edition. Cambridge, Massachusetts: The MIT Press.
Studený, Milan. 2005a. Probabilistic Conditional Independence Structures. Vol. Information science and statistics. London: Springer.
Studený, Milan. 2005b. Probabilistic Conditional Independence Structures. Vol. Information science and statistics. London: Springer.
Thwaites, P. A., and J. Q. Smith. n.d. ‘Evaluating Causal Effects Using Chain Event Graphs’. Pp. 291–300 in The third Workshop on Probabilistic Graphical Models.