1
Anderson PE, Smith JQ. A graphical framework for representing the semantics of asymmetric models. 2005;University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12).http://wrap.warwick.ac.uk/35587/
2
Bonet B. A Calculus for Causal Relevance. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: : Morgan Kaufmann 2001. 40–7.http://arxiv.org/abs/1301.2257?
3
Bonet B. Instrumentality Tests Revisited. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. S. Francisco: : Morgan Kaufmann Publishers 2001. 48–54.http://arxiv.org/abs/1301.2258?
4
Capani A, Niesi G, Robbiano L. CoCoA 4. a system for doing Computations in Commutative Algebra. 2000.http://cocoa.dima.unige.it
5
Char BW. Maple V library reference manual. New York: : Springer-Verlag 1991.
6
Gale WA, AT & T Bell Laboratories, Workshop on Artificial Intelligence and Statistics. Artificial intelligence and statistics. Reading, Mass: : Addison-Wesley Pub. Co 1986.
7
Dawid AP. Causal Inference Without Counterfactuals. Journal of the American Statistical Association 2000;95:407–24.http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377
8
Dawid AP. Influence Diagrams for Causal Modelling and Inference. International Statistical Review / Revue Internationale de Statistique 2002;70:161–89.http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901
9
Cooper GF, Glymour CN, editors. Computation, causation, and discovery. Cambridge, Massachusetts: : The MIT Press 1999. http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery
10
Barndorff-Nielsen OE, Cox DR, Klüppelberg C. Complex stochastic systems. Boca Raton: : Chapman & Hall/CRC http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988
11
Cox DR, Klüppelberg C, Barndorff-Nielsen OE. Complex stochastic systems. Boca Raton, Fla: : Chapman & Hall/CRC 2001.
12
Monroy R, Mexican International Conference on Artificial Intelligence. MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Berlin: : Springer-Verlag https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
13
Monroy R, Mexican International Conference on Artificial Intelligence. MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Berlin: : Springer-Verlag https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521
14
Mond D, Riccomagno E, Smith JQ. Algebraic causality : Bayes nets and beyond. 2007;Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13).http://wrap.warwick.ac.uk/35544
15
Pearl J. Comment: Graphical Models, Causality and Intervention. Statistical Science 1993;8:266–9.http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965
16
Pearl J. Causal Diagrams for Empirical Research. Biometrika 1995;82:669–88.http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329
17
Pearl J. Causality: models, reasoning, and inference. Cambridge: : Cambridge University Press 2000.
18
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza 2004.
19
Riccomagno E, Smith JQ. The causal manipulation and Bayesian estimation of chain event graphs. Published Online First: 2005.http://wrap.warwick.ac.uk/35590/
20
Pronzato L, Zhigli︠a︡vskiĭ AA. Optimal design and related areas in optimization and statistics. New York: : Springer 2008. http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6
21
Pearl J. Statistics and causal inference: A review. Test 2003;12:281–345. doi:10.1007/BF02595718
22
Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical Modelling 1986;7:1393–512. doi:10.1016/0270-0255(86)90088-6
23
Berkane M. Latent variable modeling and applications to causality. New York: : Springer http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176
24
Scheines R, Spirtes P, Glymour C, et al. TETRAD 3: Tools for Causal Modeling. User’s Manual. http://www.phil.cmu.edu/tetrad/
25
Shafer G. The art of causal conjecture. Cambridge, Mass: : MIT Press 1996.
26
Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2nd ed. Cambridge, Mass: : MIT Press 2000.
27
Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2nd edition. Cambridge, Massachusetts: : The MIT Press 2000. http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search
28
Studený M. Probabilistic conditional independence structures. London: : Springer 2005. http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557
29
Studený M. Probabilistic conditional independence structures. London: : Springer 2005.
30
Smith JQ, Anderson PE. Conditional independence and chain event graphs. Artificial Intelligence 2008;172:42–68. doi:10.1016/j.artint.2007.05.004
31
Smith JQ. Bayesian Decision Analysis: Principles and Practice. Cambridge: : Cambridge University Press 2010. http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237
32
Smith JQ. Bayesian decision analysis: principles and practice. Cambridge: : Cambridge University Press 2010.
33
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006. Paris: : EDK 2006.
34
Thwaites PA, Smith JQ. Evaluating Causal effects using Chain Event Graphs. In: The third Workshop on Probabilistic Graphical Models.291–300.http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf