1.
Anderson, P.E., Smith, J.Q.: A graphical framework for representing the semantics of asymmetric models. University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12)., (2005).
2.
Bonet, B.: A Calculus for Causal Relevance. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. pp. 40–47. Morgan Kaufmann, S. Francisco (2001).
3.
Bonet, B.: Instrumentality Tests Revisited. In: Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence. pp. 48–54. Morgan Kaufmann Publishers, S. Francisco (2001).
4.
Capani, A., Niesi, G., Robbiano, L.: CoCoA 4. a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it, (2000).
5.
Char, B.W.: Maple V library reference manual. Springer-Verlag, New York (1991).
6.
Gale, W.A., AT & T Bell Laboratories, Workshop on Artificial Intelligence and Statistics: Artificial intelligence and statistics. Addison-Wesley Pub. Co, Reading, Mass (1986).
7.
Dawid, A.P.: Causal Inference Without Counterfactuals. Journal of the American Statistical Association. 95, 407–424 (2000).
8.
Dawid, A.P.: Influence Diagrams for Causal Modelling and Inference. International Statistical Review / Revue Internationale de Statistique. 70, 161–189 (2002).
9.
Cooper, G.F., Glymour, C.N. eds: Computation, causation, and discovery. The MIT Press, Cambridge, Massachusetts (1999).
10.
Barndorff-Nielsen, O.E., Cox, D.R., Klüppelberg, C.: Complex stochastic systems. Chapman & Hall/CRC, Boca Raton.
11.
Cox, D.R., Klüppelberg, C., Barndorff-Nielsen, O.E.: Complex stochastic systems. Chapman & Hall/CRC, Boca Raton, Fla (2001).
12.
Monroy, R., Mexican International Conference on Artificial Intelligence: MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Springer-Verlag, Berlin.
13.
Monroy, R., Mexican International Conference on Artificial Intelligence: MICAI 2004: advances in artificial intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : proceedings. Springer-Verlag, Berlin.
14.
Mond, D., Riccomagno, E., Smith, J.Q.: Algebraic causality : Bayes nets and beyond. Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13)., (2007).
15.
Pearl, J.: Comment: Graphical Models, Causality and Intervention. Statistical Science. 8, 266–269 (1993).
16.
Pearl, J.: Causal Diagrams for Empirical Research. Biometrika. 82, 669–688 (1995).
17.
Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press, Cambridge (2000).
18.
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza (2004).
19.
Riccomagno, E., Smith, J.Q.: The causal manipulation and Bayesian estimation of chain event graphs. (2005).
20.
Pronzato, L., Zhigli︠a︡vskiĭ, A.A.: Optimal design and related areas in optimization and statistics. Springer, New York (2008).
21.
Pearl, J.: Statistics and causal inference: A review. Test. 12, 281–345 (2003). https://doi.org/10.1007/BF02595718.
22.
Robins, J.: A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical Modelling. 7, 1393–1512 (1986). https://doi.org/10.1016/0270-0255(86)90088-6.
23.
Berkane, M.: Latent variable modeling and applications to causality. Springer, New York.
24.
Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richardson, T.: TETRAD 3: Tools for Causal Modeling. User’s Manual, http://www.phil.cmu.edu/tetrad/.
25.
Shafer, G.: The art of causal conjecture. MIT Press, Cambridge, Mass (1996).
26.
Spirtes, P., Glymour, C.N., Scheines, R.: Causation, prediction, and search. MIT Press, Cambridge, Mass (2000).
27.
Spirtes, P., Glymour, C.N., Scheines, R.: Causation, prediction, and search. The MIT Press, Cambridge, Massachusetts (2000).
28.
Studený, M.: Probabilistic conditional independence structures. Springer, London (2005).
29.
Studený, M.: Probabilistic conditional independence structures. Springer, London (2005).
30.
Smith, J.Q., Anderson, P.E.: Conditional independence and chain event graphs. Artificial Intelligence. 172, 42–68 (2008). https://doi.org/10.1016/j.artint.2007.05.004.
31.
Smith, J.Q.: Bayesian Decision Analysis: Principles and Practice. Cambridge University Press, Cambridge (2010).
32.
Smith, J.Q.: Bayesian decision analysis: principles and practice. Cambridge University Press, Cambridge (2010).
33.
Information processing and management of uncertainty knowledge-based systems : proceedings = Traitment d’information et gestion d’incertitudes dans les systemes a base de connaissances : actes : July 2-7, 2006. EDK, Paris (2006).
34.
Thwaites, P.A., Smith, J.Q.: Evaluating Causal effects using Chain Event Graphs. In: The third Workshop on Probabilistic Graphical Models. pp. 291–300.