Anderson, Paul E., and J. Q. Smith. A Graphical Framework for Representing the Semantics of Asymmetric Models. University of Warwick, Centre for Research in Statistical Methodology Working papers Vol.2005 (No.12)., 2005, http://wrap.warwick.ac.uk/35587/.
Barndorff-Nielsen, O. E., et al. Complex Stochastic Systems. Chapman & Hall/CRC, http://0-marc.crcnetbase.com.pugwash.lib.warwick.ac.uk/isbn/9781420035988. Electronic resource.
Berkane, Maia. Latent Variable Modeling and Applications to Causality. Springer, http://encore.lib.warwick.ac.uk/iii/encore/record/C__Rb3211176.
Bonet, Blai. ‘A Calculus for Causal Relevance’. Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence [S. Francisco], 2001, pp. 40–47, http://arxiv.org/abs/1301.2257?
———. ‘Instrumentality Tests Revisited’. Proceedings of the Seventeen Conference on Uncertainty in Artificial Intelligence [S. Francisco], 2001, pp. 48–54, http://arxiv.org/abs/1301.2258?
Capani, A., et al. CoCoA 4. a System for Doing Computations in Commutative Algebra. 2000, http://cocoa.dima.unige.it.
Char, Bruce W. Maple V Library Reference Manual. Springer-Verlag, 1991.
Cooper, Gregory Floyd, and Clark N. Glymour, editors. Computation, Causation, and Discovery. The MIT Press, 1999, http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/computation-causation-and-discovery.
Cox, D. R., et al. Complex Stochastic Systems. Chapman & Hall/CRC, 2001.
Dawid, A. P. ‘Causal Inference Without Counterfactuals’. Journal of the American Statistical Association, vol. 95, no. 450, 2000, pp. 407–24, http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2669377.
———. ‘Influence Diagrams for Causal Modelling and Inference’. International Statistical Review / Revue Internationale de Statistique, vol. 70, no. 2, 2002, pp. 161–89, http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/1403901.
Gale, William A., et al. Artificial Intelligence and Statistics. Addison-Wesley Pub. Co, 1986.
Information Processing and Management of Uncertainty Knowledge-Based Systems : Proceedings = Traitment d’information et Gestion d’incertitudes Dans Les Systemes a Base de Connaissances : Actes : July 2-7, 2006. EDK, 2006.
Mond, D., et al. Algebraic Causality : Bayes Nets and Beyond. Centre for Research in Statistical Methodology. Working papers, Vol.2007 (No.13)., 2007, http://wrap.warwick.ac.uk/35544.
Monroy, Raúl and Mexican International Conference on Artificial Intelligence. MICAI 2004: Advances in Artificial Intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : Proceedings. Springer-Verlag, https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521.
———. MICAI 2004: Advances in Artificial Intelligence : Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004 : Proceedings. Springer-Verlag, https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/b96521.
Pearl, Judea. ‘Causal Diagrams for Empirical Research’. Biometrika, vol. 82, no. 4, 1995, pp. 669–88, http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2337329.
———. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
———. ‘Comment: Graphical Models, Causality and Intervention’. Statistical Science, vol. 8, no. 3, 1993, pp. 266–69, http://0-www.jstor.org.pugwash.lib.warwick.ac.uk/stable/2245965.
———. ‘Statistics and Causal Inference: A Review’. Test, vol. 12, no. 2, Dec. 2003, pp. 281–345, https://doi.org/10.1007/BF02595718.
Proceedings of the 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Università La Sapienza, 2004.
Pronzato, Luc, and A. A. Zhigli︠a︡vskiĭ. Optimal Design and Related Areas in Optimization and Statistics. Springer, 2008, http://0-link.springer.com.pugwash.lib.warwick.ac.uk/chapter/10.1007%2F978-0-387-79936-0_6.
Riccomagno, E., and J.Q. Smith. The Causal Manipulation and Bayesian Estimation of Chain Event Graphs. 2005, http://wrap.warwick.ac.uk/35590/.
Robins, James. ‘A New Approach to Causal Inference in Mortality Studies with a Sustained Exposure Period—Application to Control of the Healthy Worker Survivor Effect’. Mathematical Modelling, vol. 7, nos 9–12, 1986, pp. 1393–512, https://doi.org/10.1016/0270-0255(86)90088-6.
Scheines, R., et al. TETRAD 3: Tools for Causal Modeling. User’s Manual. http://www.phil.cmu.edu/tetrad/.
Shafer, Glenn. The Art of Causal Conjecture. MIT Press, 1996.
Smith, J. Q. Bayesian Decision Analysis: Principles and Practice. Cambridge University Press, 2010.
Smith, Jim Q. Bayesian Decision Analysis: Principles and Practice. Cambridge University Press, 2010, http://0-dx.doi.org.pugwash.lib.warwick.ac.uk/10.1017/CBO9780511779237.
Smith, Jim Q., and Paul E. Anderson. ‘Conditional Independence and Chain Event Graphs’. Artificial Intelligence, vol. 172, no. 1, Jan. 2008, pp. 42–68, https://doi.org/10.1016/j.artint.2007.05.004.
Spirtes, Peter, et al. Causation, Prediction, and Search. 2nd ed, Adaptive computation and machine learning, MIT Press, 2000.
———. Causation, Prediction, and Search. 2nd edition, Adaptive computation and machine learning, The MIT Press, 2000, http://0-cognet.mit.edu.pugwash.lib.warwick.ac.uk/book/causation-prediction-and-search.
Studený, Milan. Probabilistic Conditional Independence Structures. Springer, 2005.
———. Probabilistic Conditional Independence Structures. Springer, 2005, http://0-link.springer.com.pugwash.lib.warwick.ac.uk/10.1007/b138557. Electronic resource.
Thwaites, P.A., and J.Q. Smith. ‘Evaluating Causal Effects Using Chain Event Graphs’. The Third Workshop on Probabilistic Graphical Models, pp. 291–300, http://www.utia.cas.cz/files/mtr/pgm06/18_paper.pdf.