[1]
Ashcroft, N.W. and Mermin, N.D. 1976. Solid state physics. [Pacific Grove, CA].
[2]
Blunt, M.O. et al. 2008. Random Tiling and Topological Defects in a Two-Dimensional Molecular Network. Science. 322, 5904 (Nov. 2008), 1077–1081. DOI:https://doi.org/10.1126/science.1163338.
[3]
Dingle, R. et al. 1974. Quantum States of Confined Carriers in Very Thin Al_{x}Ga_{1-x}As-GaAs-Al_{x}Ga_{1-x}As Heterostructures. Physical Review Letters. 33, 14 (Sep. 1974), 827–830. DOI:https://doi.org/10.1103/PhysRevLett.33.827.
[4]
Feng, D. and Jin, G. 2005. Introduction to condensed matter physics. World Scientific.
[5]
Gabrielse, G. 2013. The standard models greatest triumph. Physics today. 66, 12 (2013).
[6]
Hook, J.R. et al. 1991. Solid state physics. Wiley.
[7]
Hook, J.R. and Hall, H.E. 1991. Solid state physics. Wiley.
[8]
Interactions in the integer quantum Hall effect.: 2007. http://wrap.warwick.ac.uk/59339/.
[9]
Interview with Dan Shechtman - Media Player at Nobelprize.org: http://www.nobelprize.org/mediaplayer/index.php?id=1746.
[10]
Jainendra, K.J. 2000. The Composite Fermion: A Quantum Particle and Its Quantum Fluids. Physics today. 53, 4 (2000).
[11]
Math, Physics, and Engineering Applets: http://www.falstad.com/mathphysics.html.
[12]
Solymar, L. et al. 2014. Electrical properties of materials. Oxford University Press.
[13]
Solymar, L. Electrical Properties of Materials [electronic resource].
[14]
The Oxford Solid State Basics | University of Oxford Podcasts - Audio and Video Lectures: http://podcasts.ox.ac.uk/series/oxford-solid-state-basics.
[15]
The Wiedemann-Franz law in the SU(N) Wolff model: http://arxiv.org/abs/cond-mat/0602374?
[16]
WebElements Periodic Table of the Elements: http://www.webelements.com/.
[17]
Weber, B. et al. 2012. Ohm’s Law Survives to the Atomic Scale. Science. 335, 6064 (Jan. 2012), 64–67. DOI:https://doi.org/10.1126/science.1214319.
[18]
1999. Thermoelectric Transport Properties in Disordered Systems Near the Anderson Transition. European physical journal. 179, 12 (1999).